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Abstract 
 

The Gene Ontology (GO) resource can be used as 
a powerful tool to uncover the properties shared 
among, and specific to, a list of genes produced by 
high-throughput functional genomics studies, such as 
microarray studies. In the comparative analysis of 
several gene lists, researchers maybe interested in 
knowing which GO terms are enriched in one list of 
genes but relatively depleted in another. Statistical 
tests such as Fisher’s exact test or Chi-square test can 
be performed to search for such GO terms. However, 
because multiple GO terms are tested simultaneously, 
individual p-values from individual tests do not serve 
as good indicators for picking GO terms. Furthermore, 
these multiple tests are highly correlated, usual 
multiple testing procedures that work under an 
independence assumption are not applicable. In this 
paper we introduce a procedure, based on False 
Discovery Rate (FDR), to treat this correlated multiple 
testing problem. This procedure calculates a 
moderately conserved estimator of q-value for every 
GO term.  We identify the GO terms with q-values that 
satisfy a desired level as the significant GO terms. This 
procedure has been implemented into the GoSurfer 
software. GoSurfer is a windows based graphical data 
mining tool. It is freely available at 
http://www.gosurfer.org  

Keywords: Data Mining, Microarray, Gene 
Ontology, False Discovery Rate, Q-value, 
Visualization, GoSurfer 

 
1. Introduction 
 
1.1. Background 
 

The Gene Ontology (GO) resource1 dynamically 
structures biological knowledge using a controlled 
vocabulary consisting of GO terms.  GO terms are 
organized in three general categories, “biological 
process, “molecular function,” and “cellular 

component,” and the terms within each category are 
linked in defined parent-child relationships that reflect 
current biological knowledge. On the basis of 
accumulated information, individual genes from all 
organisms are systematically associated to GO terms, 
and these associations continue to grow in complexity 
and detail as sequence databases and experimental 
knowledge grow.  

 
GO provides a useful tool to look for the common 

traits that are shared within a list of genes, which may 
arise from the analysis of high-throughput genomic 
data, such as microarray or proteomics data. The 
common traits are represented by the GO terms that are 
associated with a large portion of the genes in the gene 
list. More interestingly, if compared to another gene 
list, some GO terms are statistically enriched in the 
original list but relatively depleted in the comparison 
list, such GO terms may describe some unique features 
of the original gene list. For example, Genter et al2 
compared several lists of genes with tissue specific 
expression patterns, and identified the GO terms that 
are enriched in the annotation of olfactory specific 
genes. Mazzolini et al3 gathered a list of genes that are 
highly expressed in a pancreatic cancer cell line, and 
identified the GO terms that are enriched in these 
genes. 

 
Let  and 

denote the genes in list 1 and 
in list 2, respectively. A particular GO term can be 
viewed as a function, which maps gene G  into 

G G Gn1 2 1
, ,...,

G G Gn n n1 2 11 2+ + +, ,..., n2

=)(Ggo 0 or 1, according to whether gene G  is 
associated with the corresponding GO term. Thus, the 
null hypothesis of no association between the gene lists 
and a particular GO term is translated into equal 
distributions of binary random 
variables in list 1 and 

 in list 2.  
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Numerous software tools4, , , , ,5 6 7 8 9 have been 

provided to systematically perform the gene list 
comparisons in the GO space. The main idea of such 
comparisons is to use a standard 2×2 table test, to test 
whether the proportion of genes that are associated 
with a particular GO term is the same between two 

lists. For example, there are  and 

 genes associated with a GO 

term in List 1 and in List 2, respectively. Similarly, 
there are 
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21222 ObsnObs −=  genes not associated with this 
GO term, in the two lists. Table 1 illustrates how these 
numbers are distributed. Under the null hypothesis, one 

would expect that
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example, Fisher’s exact test and Pearson’s chi-square 
test can be applied to test for such hypotheses. Any GO 
term with a significant p-value could be enriched in 
one of the two lists comparing to the other. The usual 
practice is to set a cutoff on the p-value and identify all 
the GO terms that satisfy this cutoff. The criterion of 
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>  can be further imposed to choose 

the GO terms that are specifically enriched in List 1, 
and vice versa. 

 
Table 1. A 2×2 table for the distribution of 

associated and non-associated genes in two gene lists.  
 

 # of 
genes 
associated 
with this GO 
term 

# of 
genes not 
associated 

List 1 Obs11 Obs12

List 2 Obs21 Obs22

 
 
 
Our goal is exploratory in nature, that is, to find as 

many GOs associated with interested lists as possible.  
Due to the large number of candidate GO terms, the 
same statistical test would be performed for thousands 
of GO terms simultaneously — resulted in the well 
known multiple testing issue in statistics. 

 
A multiple testing problem is inherited to the 

procedure described above. Suppose there are totally N 
GO terms that are associated with at least one gene in 
either gene list. Therefore totally N hypothesis tests are 
performed. If the null hypothesis was true for all GO 
terms and all the tests were independent to each other, 
the N p-values would take a uniform (0,1) distribution. 
Picking GO terms with small p-values becomes 
statistically problematic because small p-values can 
happen with larger chances as the N grows bigger. In 
the tests for association between GO terms and gene 
lists, the problem is more involved because many GO 
terms are mutually dependent. The dependency comes 
from two sources, the hierarchical structure of the GO 
and the usage of multiple GO terms in the annotation 
of one gene. For example, Cell Proliferation is a parent 
GO term of Cell Cycle, therefore all the genes that are 
annotated with the term Cell Cycle must be annotated 
with the term Cell Proliferation. For another example, 
human HoxA7 gene has been annotated with 4 GO 
terms, Development, Nucleus, DNA Dependent 
Regulation of Transcription, and Transcription Factor 
Activity. Therefore if add the gene HoxA7 to List 1, 
the Obs11 statistics for all of the 4 GO terms will 
simultaneously add 1. 

 
This multiple testing problem has been recognized 

by several research lists. The GoMiner group6 and the 
GOTree Machine group7 both raised this problem but 
decided it is beyond the scopes of their papers. The 
FuncAssociate group4 implemented a method28 to control 
for FWER (see 1.2), but this method is too insensitive 
in detecting interesting GO terms (see 1.2 and Dudoit 
et al2 5). The FatiGO group9 implemented several 
previously devised multiple testing methods, but they 
offered no statement on the applicability of those 
methods to the current problem. 

 
We propose to use the False Discovery Rate 

(FDR) to detect GO terms. We provide a justified 
procedure to calculate a mildly conservative estimate 
of q-value10 (see 1.2) for every GO term, taking into 
account the dependency among GO terms. For a 
desired cutoff on q-value, we output the GO terms with 
q-values smaller than the cutoff. In the GoSurfer 
software, users can highlight the GO nodes that satisfy 
the cutoff on the GO tree. There are plenty of other 
graphical and interactive features in GoSurfer to help 
users to investigate the significant GO terms. 

 
1.2. Review of multiple testing procedures 
 

For a single statistical test, there are two types of 
statistical errors linked to it: type I error (false positive) 
and type II error (false negative). When conducting a 

 



statistical test to test the null hypothesis, , the 
typical approach is to determine a rejection region 

such that

0H

αR αα ≤∈ )|Pr( 0HRT , for a selected 

test statistic, T , and pre-specified type I error,α , first, 
and then draw a conclusion based on the observed test 
statistic . For an observed statistic , the p-
value is defined as  for nested 

rejection regions. P-value is viewed as a measure of 
significance for the observed test statistic. 
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However, in the presence of multiple testing, the 

situation becomes much more complicated. It is well 
known that traditional p-value cutoffs of 0.01 or 0.05 
should be made stricter to avoid an abundance of false 
positive results arising from the fact that a large 
number of statistical tests are performed at the same 
time. Various global measures of the risk of false 
positive in multiple testing have been developed, 
especially in the past 10 years for the analysis of 
microarray data. The commonly used measures can be 
summarized through quantities in table 2. 

  

Table 2. Summary for multiple testing problem, 
Benejamini and Hochberg32

 Not 
rejected 

Rejected  

Null true U  V  0m

Alternative 
true 

T  S  1m

 W  R   m  

 
 

• Family-wise error rate (FWER). The FWER is the 
probability of at least one false positive in the tests, 
i.e., . 

m
)1( ≥VP

• False discovery rate (FDR). The FDR is the 
expected proportion of false positive among rejected 

hypotheses, i.e., )0()0|( >> RPR
R
VE . 

• Positive false discovery rate (pFDR). The pFDR is 
the expected proportion of false positive among 
rejected hypotheses given at least one hypothesis is 

rejected, i.e., )0|( >R
R
VE . 

In general, FWER (FDR) is the most (least) 
conservative global measure of type I error among 
them2 5. Westfall and Young28 proposed resampling-based 
p-value adjustment procedures which offered strong 
control of FWER with dependent test statistics and 
improved the classical Bonferroni adjustment.  FDR 
was first proposed by Benjamini and Hochberg32 and has 
been extended to account for the dependent structure of 
test statistics by Benjamini and Yakutieli3 3 and Storey2 7. 
Many argued that FDR and pFDR are more appropriate 
measures to control, when the goal of the analysis was 
to reliably identify certain associations11. Various 
resampling-based test procedures controlling FDR 
were extensively studied by Van der Laan & Bryan12, 
Tusher et al2 4, Storey18, Reiner et al13, Efron et al14 and Ge 
et al15. Efron et al1 4 established an interesting 
relationship between FDR and Empirical Bayesian 
method.  Recently, Storey16  introduced the concept of 
q-value which is a generalization of p-value. Similar to 
p-value, for a given rejection region  and observed 

test statistic
αR

tT = , the q-value is defined 
as . Q-value provides the evidence of 

significance for each individual test and it 
automatically accounts for multiple testing by means of 
pFDR.  

)(inf α
α

RpFDR
Rt∈

 
Most of the aforementioned methods were 

motivated and developed for analyzing DNA 
microarray data. In a recent paper, Storey & Tibshirani11 
listed some other genomic studies where the newly 
developed methods should be used.  The data mining in 
the GO space is another interesting field for such 
applications. Regardless of many similarities with other 
genomic studies, there are many unique features in the 
association analysis in the GO space.  

 
2. Method 

 
Assuming there are GO terms in consideration: 

, the data can be summarized in a 
N

Ngogogo ,..., 21

)( 21 nnN +× matrix with the -th entry 

being

ij

21,...,1;,...,1),( nnjNiGgo ji +==  (Figure 

1, upper table).   takes value 1 if GO term 
go

)( ji Ggo
i is used in the annotation  of gene Gj , and 

takes value 0 if go)( ji Ggo i is not used to annotate 
Gj. Unlike in microarray data, where the dependence 
across different genes is expected to be weak and 
restricted to small groups, the dependence among rows 
in the GO data matrix is strong and may be 
complicated (see Discussion).  

 

 



 
List 1 List 2  
G1 … Gn1 Gn1+1 … Gn1+n2

GO1 go1(G1) … go1(Gn1) go1(Gn1+1) … go1(Gn1+n2) 

GO2 go2(G1) … go2(Gn1) go2(Gn1+1) … go2(Gn1+n2) 

…       
 

For every GO term: 

 # of genes associated 
with GO1

# of genes not 
associated with GO1
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Figure 1: Linking genes with GO terms. The 
goi(Gj) functions in the upper matrix takes value 1 if GO 
term i is used to annotate gene Gj, and takes value 0 if 
not. The upper matrix is referred as the GO data matrix. 
The lower table shows how to generate the cell counts 
from the GO data matrix for the 2×2 table of every GO 
term. Gene-list and GO term association test can be 
performed based on the cell counts in the lower table. 

 
Various statistical tests can be used for testing 

association between gene lists and GO terms. In the 
following, we take a modified Pearson’s chi-square test 
statistic as an example to describe our procedure, 
which is implemented in GoSurfer v1.1. For every 
individual GO, we calculate a signed Chi-square 
statistic, 2X . The statistic is defined as  
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The test statistic 2X provides not only the 
strength but also the direction of the potential 
association.  

 

Due to the dependence among rows of the GO data 
matrix, the test statistics calculated from different rows 
are dependent. Similar to the SAM procedure17, 24 (see 
Discussion), the null distribution can most easily be 
calculated by permuting the list labels, or one can use 
the bootstrap. Storey & Tibshirani17 and Westfall & 
Young28 provided insights in comparing the two 
methods. The permutation method has a strength in that 
if the null hypothesis is true, then we are able to 
calculate the null distribution exactly. To be more 
specific, denote the signed Chi-square statistic for GO 
term  as . We rank the s from the smallest to 

the largest. Denote as the  order statistic of 

s. To generate the null distribution 

of , we permute the list labels in the 
data matrix, i.e we randomly reassign the genes into 
two lists while fixing the total number of genes in each 
list the same as the original gene list. All the gene to 
GO mapping functions, go

i 2
iX 2

iX
2

)( jX thj
2
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KjX j ,...,1,2
)( =

i(Gj)s, are untouched in the 
permutation. Following the same procedure as the 

s are calculated, in  permutation we calculate 

new , which are denoted by . After a large 

number of permutations, say
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Regard this distribution as the background distribution 
of , we can ask the question of how likely the 

actual  can be observed. We compute the 

following quantity for any GO term k : 
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where  }{⋅I   is an indicator function and )(ˆ 00 cπ  
is an estimator for the proportion of true null 
hypotheses, which is equivalent to Storey’s )(ˆ0 λπ 18.  
We will show in the Appendix section that (3) is a 
mildly conserved estimate of the q-value for GO term 

. In the end, GoSurfer v1.1 labels each GO term 
with its corresponding estimated q-value. Users can 
then identify a list of GOs at a desired q-value level. 
Compared with SAM, our q-value estimator is adjusted 
by an additional factor

k

)(ˆ 00 cπ , which may improve 
the conservativeness of FDR estimation in SAM 

 



considerably when )(ˆ 00 cπ is not close to 1 (see 
Discussion for more differences). 

 
3. Software 
 
3.1. GoSurfer v1.1 

 
GoSurfer19 is a windows based graphical 

interactive data mining tool. We briefly summarize its 
previous functionalities here. GoSurfer takes one or 
two list(s) of gene ids as input file(s). The gene ids can 
be Locuslink ID, Unigene ID, or Affymetrix probe set 
ID. GoSurfer finds all the GO terms that are associated 
with any genes in the input gene list(s), and visualize 

these GO terms as three hierarchical trees. Each tree 
corresponds to one of the three general GO categories 
“biological process, “molecular function,” and “cellular 
component”. Users can manipulate the graphic output 
in various ways. For example, users can trim off the 
GO terms that are associated with only a small number 
of the input genes. The Chi-Square test described in the 
introduction section can also be performed to search 
for the GO terms that are enriched in the annotation of 
one input list of genes. Users can click on the GO 
graph to find the input genes that are associated with 
the clicked GO term. Figure 2 shows a screen shot of 
GoSurfer, when it only takes one input list of genes.  

 
Figure 2: GoSurfer screen shot displaying a GO tree of the biological process category. Each node represents an 

individual GO term and all GO terms at display are associated with at least one out of 575 liver specific genes (data not 
shown).  For clarity, only terms (nodes) that are associated with at least 4 genes from the data set are shown.  The path 
to the GO term “intracellular signaling cascade” is highlighted in red and corresponds to the terms displayed in the status 
line (arrows). Inset: pop-up window displaying all genes in the data set that are associated with the GO term “intracellular 
signaling cascade.” Selected nodes are marked with numbers, and the corresponding GO terms are listed underneath 
the tree structure. 

 

We have implemented our method for controlling 
for multiple testing (see Method section) into GoSurfer 
v1.1. Users can use GoSurfer both to calculate the 
estimated q-value for every GO term and to highlight 
the GO terms that satisfy a user defined q-value 

threshold, on the visualized GO trees. To perform such 
analyses, users first need to input two lists of genes for 
comparison. If the user is only interested in knowing 
the specialties of one gene list, he/she can choose to 
compare it with all the genes targeted by a microarray 
or all the known genes of a species. Users can click on 
GoSurfer’s menu “Analysis -> FDR” (Figure 3). After 

 



the FDR menu being clicked, a popup window will 
show up, where users can designate the desired 
location of the output file. This output file records the 
following information for every GO term: the observed 
test statistic, the mean of the test statistics under 
permutation, and the estimated q-value. Users can use 
menu “File -> Export -> GO info” to obtain more 
detailed information for every GO term, such as its 
relative location(s) in the GO tree graph, the number of 
genes attached to this GO term in every input list, its p-
value from a chi-square test for gene enrichment, its q-
value, etc. This exporting process can take several 
minutes. A progress indicator will show up at the lower 
left corner of the software window to help users 
monitor the exporting process. 

 
Figure 3: Activating the FDR menu in GoSurfer. 

 
To highlight the GO terms that satisfy a q-value 

threshold, users can first draw any of the three GO 
trees using the submenus of the “View” menu. After 
the GO tree is drawn, users can click on the “Analysis -
>Highlight” menu. In the popup window, users can 
choose to use the multiple testing procedure, and set a 
threshold on the q-value. The satisfied GO terms will 
be highlighted accordingly (Figure 4). Users can then 
use other interactive features to explore these GO terms 
or manipulate the graph.   

 

 
Figure 4: Using the multiple testing procedure to 

identify interesting GO terms in GoSurfer. 

 
3.2. dChip-GoSurfer interaction 

 
Although GoSurfer is designed to investigate any 

sets of genes, coming from any kinds of studies, it has 
a strong interactive feature with dChip20 software, 
which is specialized in microarray analysis. This 
interactive feature makes all the described analyses in 
the GO space more directly accessible to microarray 
analysis. For example, suppose a researcher compared 
the microarray data of normal and cancer samples, and 
found a list of activated genes and a list of suppressed 
genes in the caner samples with dChip software. The 
researcher can directly call out GoSurfer from dChip. 
GoSurfer will automatically take the two lists of genes 
to map onto the GO space. The researcher can then 
perform subsequent analysis with GoSurfer. Often of 
the case is that the researcher is not sure about his/her 
methods in identifying genes, so that he/she needs to 
resort to GO to make more educated judgments. In 
such a case the direct interaction between dChip and 
GoSurfer would greatly facilitate the analytical and 
discovery process. Some researchers6 commented that 
in the revolutionizing era of biology, three challenging 
steps have to be taken to make discoveries: experiment, 
statistical analysis and biological interpretation. The 
dChip-GoSurfer software suit may greatly facilitate the 
last two steps. Figure 5 shows the dChip-GoSurfer 
pipeline of data analysis and visualization. 
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Figure 5: The dChip-GoSurfer data analysis and 
interpretation pipeline. 

 
4. Data example 

 
We used GoSurfer to find the GO terms that are 

significantly associated with genes showing altered 
expression in prostate cancer in comparison with 
normal prostate. We analyzed the data from a 
microarray study of gene expression in 52 prostate 
tumor specimens and 50 normal prostates21.   

We identified 338 genes that were significantly 
up-regulated and 380 genes that were significantly 
down-regulated in cancerous compared to normal 
prostate (see online supplementary data). Mapping the 
two lists of genes onto the GO space, we found 1003 
GO terms that are associated with at least one gene in 
either of the two lists. We performed the q-value 
estimation from 100 permutations. We asked GoSurfer 
to output all the GO terms together with all their 
intermediate and final statistics. Figure 6 shows the 
ordered observed signed X2 statistics and the ordered 
mean X2 statistics of the permutations, for all the 
associated GO terms.  
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Figure 6: Observed and mean permutation X2 statistic 
for every GO term. The 1003 GO terms are ordered by 
their observed X2 statistics, and they are arranged on 
the x axis with equal distances. The y axis is the signed 
chi-square test statistic, X2. The blue dots are the 
ordered observed statistics. The red dots are the means 
of the ordered X2s of every permutation.  

 
By a q-value cutoff of 0.1, we have identified 25 

GO terms that are enriched in the up-regulated genes in 
the cancer cells, and 40 GO terms that are enriched in 
the down-regulated genes in cancer cells (see 
supplementary Table 1 and Table 2 online). We 
displayed the GO trees and color-coded the significant 
GO terms. The example in Figure 7 highlights 
biological processes that are significantly associated 
with genes induced (magenta) or repressed (blue) in 
prostate cancer compared to normal prostate.  The 
preference of blue in the tree display suggests that 
repression of gene expression could be a major factor 
contributing to tumor phenotype.  Interestingly, a 
different microarray study on prostate cancer reported 
that metastatic tumors were distinguished from 
nonmetastatic by a larger number of down-regulated 
genes22. Biological processes that were significantly 
associated with genes up-regulated in prostate cancer 
included “protein metabolism” and “protein 
biosynthesis” (Figure 7, nodes 6, 7). A few ribosomal 
complex related GO terms are also heavily associated 
with cancer induced genes (see Supplementary Table 1 
online), perhaps reflecting aberrant proliferative 
control or energy metabolism. Biological processes that 
were associated with genes down-regulated in prostate 
cancer included “regulation of cell proliferation” (node 
8), “organogenesis” (node 9), “cell mobility” and 
“muscle contraction” (nodes 10,11), and a pathway 
representing surface cell surface receptor signal 
transduction (nodes 3,12,13). Down-regulation of 
genes involved in the regulation of cell proliferation 
points to the expected defect of mitotic control in 
cancer cells.  The down-regulated genes in this node 
(Supplementary Table 3 online) include several well-

 



known tumor suppressors, but also many positive 
regulators of cell proliferation, implying that the 
regulatory circuits for mitotic control are generally 
perturbed in prostate tumors. Down-regulation of genes 
associated with cell mobility and muscle contraction 
(Supplementary Table 4 online) perhaps reflects the de-
differentiated phenotype of tumor cells, since the 

normal prostate gland is a contractile organ containing 
smooth muscle cells. Suppression of genes associated 
with cell communication (node 12) and signal 
transduction (node 13) in prostate cancer is in 
agreement with the reported insensitivity of cancer 
cells to exogenous anti-growth signals23. 

 
 
 

 
Figure 7: GoSurfer comparison of biological processes significantly (q-value <0.1) associated with genes up-regulated 
(magenta) or down-regulated (blue) in prostate cancers compared with normal prostate.  For clarity, only terms that are 
associated with at least 2 genes of the induced or repressed gene sets are shown. Selected nodes are marked with 
numbers, and the corresponding GO terms are listed underneath the tree structure. 

 
 

5. Discussion 
 

We have posed the multiple testing problem in the 
more common than ever practice of searching for 
enriched GO terms in gene lists. We explored the 
suitability of using FDR strategies to deal with this 
problem and proposed a mildly conserved estimator to 
the q-value for GO term.  We have implemented this 
method into GoSurfer software, allowing researchers to 
list and display the GO terms that satisfy any q-value 
cutoff. This functionality, together with plenty of other 
graphical and interactive features, has made GoSurfer a 
useful tool in functional analysis for large gene sets. 
Especially the dChip-GoSurfer interaction makes data 
mining in the GO space from microarray data more 
convenient and efficient. 

 
Although the multiple testing issue in the GO 

setting has similar flavor to the well explored 

microarray setting, the natures of studies, and 
subsequently, the statistical procedures, make the two 
settings different. Both the gene to GO mapping and 
the strong correlation among GO terms have made the 
multiple testing issue in this particular setting an 
interesting statistical exercise. We would like to 
provide a heuristic explanation of the way we handled 
the correlation. In the permutation, neither the goi(Gj) 
transformation nor the GO structure is changed. 
Suppose under the null, the two lists of genes have no 
difference, i.e. they come from the same underlining 
distribution. Here the genes, Gjs, are regarded as 
random variables. All the gene to GO mappings, 
goi(Gj)s, are transformations of  Gjs. The joint 
distribution of goi(Gj)s is determined by the 
underlining distribution of all Gjs. As long as the 
underlining distribution of genes is fixed, the joint 
distribution of goi(Gj)s is fixed. Any permutation on 
the list labels would provide a random sample from 
underlining distribution of genes, and the consequently 

 



derived new goi(Gj)s would jointly follow the same 
pre-fixed distribution. So that every gene permutation 
would give a random sample of {goi(Gj)} from the 
same distribution of the actually observed {goi(Gj)}. 
Therefore under the null, the permutation is capable of 
the generating new {goi(Gj)} with the same correlation 
structure as the observed {goi(Gj)}.  

 
The SAM software24 used permutation method to 

calculate FDR estimate in a two-sample comparison 
setting for microarray data. Our method is different 
from SAM’s in three major ways. 1. SAM asks for a 
user defined rejection region and estimate the FDR for 
the designated rejection region, while GoSurfer allows 
users to directly input a desired q-value cutoff, and 
automatically finds the corresponding rejection region. 
2. The SAM’s estimate of FDR does not include the 

)(ˆ 00 cπ  factor, and some researchers criticized it for 
being too conservative25,26, although later a new 
approach by Storey27 was added in. 3. An ideological 
difference: the SAM considers the different rows in the 
data matrix as different data, while we consider the 
different rows in the data matrix as different 
transformations of the same underlining data. If we 
regarded the different rows in the data matrix as 
different data, then the correlation across different rows 
would be too complex to sort out. There are quite a few 
implicit statistical approximations in the original SAM 
paper2 4, which were later clarified17.  We have outlined 
the most important approximations of our procedure (in 
Appendix). It may help interested readers to have 
deeper understanding of our procedure, as well as 
SAM’s. 

 
Seldom has any software besides GoSurfer 

seriously treated the multiple testing issue in the GO 
space. To our knowledge, only the FuncAssociate4 team 
and the FatiGO9 team have made such efforts. 
FuncAssociate used Westfall and Young’s method28,29 
to control for FWER, which is very conservative25 and 
insensitive in detecting interesting GO terms. The 
FatiGO team implemented 4 methods: Westfall and 
Young30,31 (W&Y), Benjamini and Hochberg32 (B&H), 
Benjamini and Yekutieli33 (B&Y) and their own 
permutation method. The FatiGO authors gave little 
information on the implementation details and the 
applicability of these methods to the problem at hand. 
Among these methods, B&Y seems to be most 
desirable for two reasons. It works under a very relaxed 
dependency requirement, and it is not too conservative. 
The permutation test devised by the FatiGO group 
actually does not control for multiple testing. 

 
Finally, the FDR calculation procedure proposed 

in this paper does not depend on the choice of the 

individual test statistic. We used a modified Chi-square 
test statistic, but other statistic like the statistic of 
fisher’s exact test can also be used. 
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Appendix 
 

To see that (3) is a conserved estimator of the q-
value of GO term k , let  

denote the rejection region 

for all the  tests, we have the following 
approximations:  
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where denotes the complete null hypothesis: 

null hypothesis holds true for all the m  hypotheses, 
is the alternative and  is an appropriately chosen 

cutoff value such that is 

negligible compared with  for 

reasonable alternative . When the proportion of true 

null hypothesis, , is close to 1, or the “weak 

dependence”18 structures of the test statistics under  
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and  are similar, it is expected that 

. The 
two conditions are satisfied in practice by our limited 
experience. Therefore the (3) approximates 
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Because the rejection region  

is so defined that GO term possesses the smallest 
|  in the rejection region, the quantity in (3) is an 

estimate of q-value. It is easy to see that if 

|}||{|)( 22
kXXkR ≥=

k
| 2X

)(ˆ 00 cπ  is a 

conservative estimate of 0π  (the proportion of true 
null hypotheses), then (3) is a conserved estimate of q-
value. We use a reasonably small  to guarantee the 
conservativeness.  
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